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Tunneling in Magnetic Fields 

Abhijit Bhattacharyya ~ and Sayan Kar 2'3 

Received March 19, 1994 

Tunneling effects in external magnetic fields are discussed in the model problem 
of a charged particle on a vertical rotating circle in a uniform gravitational field. 
The magnetic fields used are the ones for the monopole and a certain solution 
that arises in the context of the classical Weinberg-Salam model, Using 
instanton methods and the Gaussian approximation, various consequences 
regarding the tunnelling amplitudes and the level splittings in the presence of 
magnetic fields are obtained. 

1. I N T R O D U C T I O N  

In an earlier p a p e r  Kar  (1992) discussed quantum tunnelling in the 
problem of a particle on a vertical rotating circle in a gravitational field, 
using instanton methods. There it was shown that for co > co o [co is the 
angular frequency of rotation of the circle, co o = (g /r )  I/2, g is the accelera- 
tion due to gravity, and r is the radius of  the circle] the apparent 
degeneracy in the minima of the potential is lifted due to tunnelling 
phenomena. Using the Gaussian approximation and the dilute gas sum, the 
splitting was evaluated. A correspondence between the particle on a 
rotating circle (PORC),  the particle on a circle (POC), and the sine-Gordon 
(SG) and double-sine-Gordon (DSG) field theories was also discussed. 
Known solitary wave solutions of  the (1 + 1)-dimensional DSG theory 
were used to write down the relevant instantons in PORC. 

The present paper, as a sequel to Kar  (1992), examines the effects of  
magnetic fields on tunnelling amplitudes and level splitting. Previous work 
related to tunneling in the presence of magnetic fields has been primarily on 
two-dimensional systems (Freed and Harvey, 1989; Jain and Kivelson, 
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1988). Our problem is essentially one dimensional. We assume certain 
special magnetic fields in the presence of which the Lagrangian retains the 
same functional form. The net effect of the presence of  such magnetic fields 
become encoded in the parameter a present in the potential term. However, 
our choice of these magnetic fields is not entirely arbitrary. Interestingly, 
they turn out to be the ones that arise for the magnetic monopole and in 
the context of certain classical solutions of the Weinberg-Salam model. 
Detailed discussion regarding them are discussed in the appendix. They are 
also obtained in Soni (1980) and Ryder (1985). 

After a discussion of the classical mechanical problem in Section 2 we 
move on to the instanton solutions and Euclidean actions for the various 
cases. This comprises Section 3. In Section 4 we use the Gaussian approx- 
imation and the dilute gas sum to evaluate the tunneling amplitudes and 
level splitting in the presence of  magnetic fields. Using a simple argument 
crucially dependent on the form invariance of the Lagrangian in the 
presence of magnetic fields, we show how the tunneling causes changes for 
the various cases. Finally in Section 5 we summarize our results. 

2. THE CLASSICAL MECHANICAL P R O B L E M  IN EXTERNAL 
MAGNETIC FIELDS 

In the absence of  a magnetic field, the Lagrangian for a particle 
moving on a vertical circle rotating about the vertical axis in a gravitational 
field can be written as 

L =  m r 2 0 2 - - ~ m ~ o 2 r 2  c o s ` 9 + ~ r  r ; e )>co  o ( la)  

o r  

1 2"2  1 L '  = ~ m r  `9 -- -~ mcoZr2(cos 9̀ + 1) 

( g) x cos`9 -- 1 + 2 ~ r  , ~o<co o ( lb)  

Here 9̀ is the only generalized coordinate, co is the angular frequency of 
rotation of the circle, r is the radius of the circle, m is the mass of  the 
particle, and g is the acceleration due to gravity. The reason for writing two 
different Lagrangians for the ranges o) > e)o and o9 < O)o is discussed in Kar  
(1992). It is basically to allow us to take the co ~ 0  limit in equation ( lb) .  

We first deal with the case in which co > ogcrit, where cocrit is the value 
of  co beyond which the pair of  degenerate minima appear in the effective 
potential function. These minima are separated by two kinds of barriers at 
,9 = 0 and `9 = 7r. 
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In the presence of a magnetic field the Lagrangian can be written using 
the standard form 

I 2 Z -- ~mlv I + qA "v -- V(x) (2)  

The vector potentials for the two magnetic fields are given as follows (A 1 
denotes the potential for the field that arises in the context of classical 
solutions in the Weinberg-Salam model. A2 is the vector potential for the 
magnetic monopole): 

~h sin 
A1 - ~ (3a) 

r 

qs(1 - cos ~) A 
A s -  eo (region excluding S pole) 

r sin 0 
- rh( 1 + cos 0) (3b) 

- r sin 0 e~ (region excluding N pole) 

where ql and r/2 are two constants. 
This construction for A2 is due to Wu and Yang (1975). 
Using (2), we can write down the Lagrangians for the problem at 

hand. These are 

I t 2 s ( c~176 ~2 Ll = ~ m r 2 0 2 - - ~ , n r  (o9 + f l l~)  c o s 0 q  (3) 

1 1 2 s f  ~ f l s ~  s 
L2 = ~ m r 2 ~ S - ~ r n r  ~ ~cos 0 + ~2 ~2 / (4) 

where 

fll - 2qrh f12 = qr/2 " q > 0 (5) 
m r  2 , m r  2 , 

Henceforth, we shall use fil = f12 = fl and fl/co o = 1. Also ~002/0~ 2 will be 
defined as a. The potentials in (1), (3), and (4) with the simplification turn 
out to be 

1 2 2 1  Ve~(~) = ~ mr ~9o a (cos 0 + a) 2 (6) 

1 2 2 1  
Ve~ 1 (0) = ~ mr ~o -~z (cos 0 + k 1)2 (7) 

1 2 2 1  
V ~ ( ~ )  = -~ mr mo a - (cos 0 + k2) 2 (8) 

where 

a k2 -- a + ~ (9) kt = x/~ + 1 ' 
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At this point,  it is impor tan t  to mention an interesting fact that  results 
when we have the monopo le  sitting at the center o f  the circle. Since 
COo = (g/r) m,  we can use % = 0 as a method by which we can switch off the 
gravitat ional  field. Wi thout  any magnetic field, this implies a simple 
cosine-squared potential  and the barriers are at `9 = ~, 2~ (o f  equal height) 
with the minima at `9 = re/2, 0 = 3rc/2. However,  in the presence o f  a 
magnet ic  field, the potential  takes the form 

1 2 2 V ~ ( O )  = ~ mr co (cos ~ + fl/co)2 (10) 

Fo r  fl < co we have the same situation as we had when only a gravitational 
field was present. 

Let  us n o w  analyze the m a x i m a - m i n i m a  structure o f  the effective 
potential in some detail. We have 

V ~ ( ` 9 ) :  ,9 = 0, ~ ( m a x i m a )  

`9 = c o s - t ( - a ) ,  

V~m(`9): `9 = 0, r~ ( m a x i m a )  

`9 = c o s - t ( - k l ) ,  

Vr `9 = 0, n (maxima) 

`9 = c o s - l ( - k 2 ) ,  

2z~ - cos-1( _ a) (minima) 

2re - cos -1( _ k l ) (minima) 

2re -- c o s -  1( _ k2) (minima) 

We now compare  the effective potential  in the presence o f  magnetic  fields 
with the case where no magnetic field is present. The plots o f  Veer(O) versus 
0 for various cases are shown in Fig. 1. 

For  Veen(`9) the critical frequency COol beyond which the degenerate 
minima appear  is given as 

cool = (co2o + fl~ /4) 1/2 _ fit/2 (11) 

which is less than COo. In  the case when fit = f12 = COo, COot = 0.618coo. 
With V~2(`9), the critical frequency co0z is given as 

coo2 = (e)o 2 + fl~/4)1/z + flz/2 (12) 

This is greater than co o and is equal to  1.618o)o for  fll = f12 = coo. 
In  the case o f  Veen (`9) the minima shift toward `9 = 0 (2r0 as compared  

to the case without  B. The opposite phenomena  occur for Ve~(`9). In  this 
case both  minima shift toward `9 =re. The barrier heights at `9 = 0 and 
,9 = = change in the following way. For  V~el (0) the 0 = 0 barrier as well as 
the `9 = rc barrier can increase or  decrease by the same amoun t  as compared  
to the case with no magnetic  field. I f  co > coo, then there is an increase. I f  
coo~ < c o <  coo, then there may  be an increase or  a decrease depending on 
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equation (8). The value of a chosen is 0.2. 

whether (o%/o)2 2)(J)0/(rj) 1 2  2 + flco) or a2/(1 + xfa)  is less than or greater than l. 
However for 0 < a < 1, a2/(1 + x/a)  is always less than 1. Hence even for 
%1 < co < coo the barrier heights increase. For  Ve~(O) the ~9 = 0 barrier 
decreases and the 0 = n barrier increases. However, the amount  of  increase 
is not equal to the amount  of  decrease- - in  fact, the former is more than 
the latter for all values of  0 < a < 0.382 (0 < kl < 1). 

In the case when the effective potential does not exhibit a pair of  
degenerate vacua, the Lagrangian in the presence of external magnetic 
fields can be written as follows [these are constructed in such a way that 
they look similar in form to equation ( lb ) ;  the subscripts 1 and 2 refer to 
the magnetic fields mentioned before]: 

1 1 
L'  1 = ~ mr2~ 2 - ~ mr  [(cos 0 + 1)(cos 0 -- 1 + 2kl)] 

1 1 2 2 
L'2 = ~ mr202 - -  ~ mr  co8 [(COS 0 + 1)(COS 0 -- 1 + 2k2)] 

a 

(13) 

Therefore in order to compare the tunneling amplitudes and the level 
splittings in these cases with those for the case of  no magnetic field we have 
to take values of  a > 1.618 for L' ,  L '  l and a > 1 for L' ,  L'2. 

Also the only barrier at 0 = 0 is affected in the following way in the 
presence of magnetic fields. For  the potential in L '  I it remains unaltered, 
whereas for the potential in L~ it decreases. 

(14) 



68 Bhattacharyya and Kar 

Qualitatively, therefore, we expect a decrease in the tunneling ampli- 
tude as well as the level splitting for Vegl (0). For Vef~(0 ) they should also 
decrease. Similar results can be derived for the case when the potential does 
not exhibit a pair of degenerate minima. In the next two sections, we use 
semiclassical arguments to arrive at these conclusions. 

As a passing remark, we mention that the (0 + 1)-dimensional Lagran- 
gians mentioned here are essentially one-dimensional analogs to the DSG 
theory in 1 + 1 dimensions. The Lagrangian density for the DSG theory is 
given as 

1 1 
2e = -~ (a.(o)(a~ff)) -- ~Pl (cos q5 + P2) (15) 

Therefore in constructing the instantons one can either use the solitons of 
(7) or directly integrate the equation of motion in Euclidean time. 

3. THE INSTANTONS 

The instanton solutions and the Euclidean actions for the Lagrangians 
given in (1), (3), and (4) are listed below. The Euclidean actions are 
denoted by SEi, where i is a subscript corresponding to the relevant 0i (z). 

(a) Lagrangian  L 
(i)  Instanton/anti-instanton across the 0 = 0 barrier: 

'F[I+a'VI2 ' (1-a2)1/22 ] 
0 , ( z ) :  _+2tan- l t T ~ a a  ) tann c0zj (16) 

tan ,(1 + yq 

(ii) Instanton/anti-instanton across the 0 = ~ barrier: 
02(z) = _+2 tan-iF( 1 -Pa~ 1/2 (1 - a2) '12 ] LkT-m--~- a ) coth 2 cot (18) 

Pf l  a2k 1/2 
SE2 = 2m . "2r 3 '21t ) - -  2 ~ , la  - I / ' l  - -  a~ l /2 - [  tan t~-~-~a) J (19) 

(b) Lagrangian  L 1 
(i) Instanton/anti-instanton across the 0 = 0 barrier: 

tan-lF(1L\l --2~U+ k'~l/2 - a2)1/22 ] 03(~) = -t-2 tanh (1 (1 + x//a)'/2cov (20t 

F / 1  __ b-2\1/2  sE3 =2mgi,=r3, LC ) +2ki ,2 '/2} (21 )  
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(ii) Instanton/anti-instanton across the 0 = rc barrier: 

_ ~ coth 2 ( 1 + x/a)1/20)'/7 

V/1 _ k2\1/2 _1/1 - k,'~lls] s~4=Zmg'/~r3'~[t~' ) - 2 k ,  tan t ~ )  J 
(c) Lagrangian L 2 

(i) Instanton/anti-instanton across the 0 = 0 barrier: 

+2  t a n - i t (  1 + k2~'12 tanh (1 -k22)m 1 Os(z) = 
- L \ I  - ks/# : i  ~oz J 

(ii) 

SEs=2mgll2rStZ[( -~-)ilS+ 2ks tan-l(1 +k2~1/21 
xfa \ l - k s J  J 

Instanton/anti-instanton across the ~ = rc barrier: 

+ 2  tan_l~(1 +ks~U2 coth ( 1 - k 2 )  1/2 ] 
06(Z)  

- L\I - k s /  2 coz J 

SE6 = 2mg I/2ra/2 -- ~ tan - -  tl+ J J 
(d) Lagrangian L' 
Instanton/anti-instanton across the ,9 = 0 barrier: 

V/ a ~1/2 (a -- 1)l/2 1 
07(27) = - [ - 2 t a n - l i l a C - -  1 I L k /  sinh a ~~176 J 

(e) Lagrangian L'1 
Instanton/anti-instanton across the 0 = 0 barrier: 

08(z) = _+ 2 tan-I  [ ( k l k ~  1 )w2_  sinh (kt - 1) 1/2 ~OoZ l k l  

SE8 = 4mg U2r 3/2[k I/2 tan-  1 _ _  
1 (k,  - 1) '/2- ] 

(k,- 1) '/2 + \ - - ~  J J 

(22) 

(23) 

(24) 

(25) 

(26). 

(27) 

(28) 

(29) 

(30) 

(31) 
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(f) Lagrangian L'2 
Instanton/anti-instanton across the 0 = 0 barrier: 

09(~) _--__ 2 tan- ' I (k2--~l) l /a  sinh (k2 '~ 1) 1/20goZl 

SE9 = 4mgl/Zr3/2 tan-  (k 2 _ + 

(32) 

(33) 

4. TUNNELING AMPLITUDES, LEVEL SPLITTING 

Our analysis of the tunneling amplitude and the level splitting is based 
on the Gaussian approximation to the path-integral representation of the 
amplitude and the dilute gas sum. Using these, we can write down the 
relevant expressions for the amplitudes and the level splitting formulas. A 
word here about the notation. Ti, Ai and T'i, A'i (i = 0, 1, 2) denote the total 
tunneling amplitude and the magnitude of the splitting, respectively. The 
prime refers to the case when the effective potential has a single barrier at 
0 = 7r. The subscript i represents the three cases of no magnetic field and 
fields generated by A1 and A2, respectively. These T~, A i a r e  given as 

T O = (o~o.~/~) exp( - eo coo z / 2 ~ )  

X [ g l  (a ) (SE 1 )l/2 exp( -- SE,/h) + K a (a)(S~2)'/2 exp( - SE2/h)] (34) 

T, = (e I/~h) '/2(~ooz/x/~ 1) exp( - eocoor /2~ , )  

x [K, (kl)(SE3) 1/2 exp( - SE3/h) + Kz(k,  )(SEn) ,/2 exp( -- SEJh)] (35) 

T 2 - - - =  (ez/gh)1/2((.Oo~/%//a ) exp( - eoO)oZ/2x/a ) 

x [K, (k2)(SEs),/2 exp(-S~5/h) § K2(k2)(SE6)1/2 exp( -SE6/h)] (36) 

A 0 = 

A l = 

A 2 

(2he)o/w/a)[K, (a)(SE,),/2 exp( - g E l / h )  

+ K2(a)(SE2),/2 exp( --SEJh)] 

(2hcoo/x//~)[K1 (k, )( SE3) '/2 exp( -- Se3/h) 

+ K2(kt)(SE4),/2 exp( - SEJh)] 

(2he)o/w/-a)[Kl (k2)(SEs)I/2 exp( - SE5/h) 

+/(2 (k2)(SE6)I/Z exp( - SE6/h)] 

where ao, el, and e 2 are given as 

a~ = mr2(1 -- a2), ' e 2 = mr2(1 -- k~), 

(37) 

(38) 

(39) 

ct 2 = mr2( 1 -- k~) (40) 
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T'i and A~ are given by 

T'o = \ rch j , - ~  exp - - - -  

= ~ e x p / - - - -  r', \ hJ \ 

= exp  - - -  

c~~176176 K ~- -~  ) [  3(a)(SE7) ~/2 exp @ 3 (41) 

~~176 ] (42) 
2x/kl , / l  

cZ~ar)[K3(k:)(SE9)'/:exp@ l (43) 

A'o = ~ K3(a)(SEr)1/2 exp (44) 
. , / u  

2hCOo ( - -  S E  8 7 A'I ~ LK3(kl)(SEs) I/2 = e x p - - ~ - - j  (45) 

A; = ~ a  /<3 (k:)(SEg) 1/2 exp (46) 

t t ! where so, e~, e2 are given as 

e;2 = mra(a _ 1), e'l: = mr2(kt - 1), e~2 = mr2(k2 - 1) (47) 

Notice that we used the same functional forms K~, K:,/<3 for the ratio 
Of determinants in the expressions above. This arises out of  the form 
invariance of  the Lagrangian in the presence of magnetic fields relative to 
the case without them. We now deal with the four cases separately: 

(a) In the presence of  the magnetic field generated by the vector 
potential A] we find that the tunneling amplitude and the level splitting 
both decrease. This happens as follows. Assume a value k~ = ~ and 
substitute this in the expressions for 7"1 and A~. Then, using the same/? for 
a in the expressions for T O and Ao, we find that 

To(a =fl)  = T~(k~ =fl)  Ao(a =fi)  = A,(k~ =fl)  (48) 

However, k~ = [3 implies that the actual value of  a involved in (9) is larger 
than k]. This means that there is a one-to-one correspondence between To, 
Ao and Ti, A~ provided the value of  a used to evaluate the former is the 
same as the value of  k~ used to evaluate the latter. Hence, in the presence 
of  the magnetic field the splitting of  the tunneling amplitude remains the 
same if the angular frequency of rotation is reduced in a certain way. Now 
if we keep 09 or a fixed, say, at a value a = 7, we will have 

To(a = 7) > T1 (a = 7), Ao(a = 7) > A~ (a = 7) (49) 
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This follows from the fact that as a decreases, Ti and A i decrease and they 
ultimately go to zero as a --+ 0 (co ~ ~ ) .  Our analysis therefore proves our 
assertion that the tunneling amplitudes and splittings would decrease in the 
presence of  the field due to A1. This is in conformity with the fact shown 
in Section 2 that the barrier heights at 0 = 0 and 0 = rc both increase 
relative to the case of  no magnetic field. 

(b) In the presence of a magnetic monopole we can see very clearly 
that the trick used in the previous case does not work. This happens 
because we cannot write To(a = f l ) =  T2(k2 = fl). The expression for T 2 
includes k2 as well as a. Thus, if we use k 2 = fl, we need to use an a which 
comes from the solution of the equation a + ~ = ft. On the other hand, 
if we use a = fl in To, we find no such situation. Therefore, we shall only 
give a partial answer to the question: what happens to the tunneling 
amplitude when a monopole is sitting at the center? 

Assume a situation in which we can tune the frequency of rotation of 
the circle. Initially there is no monopole and we have a = fl, say. Then we 
place the monopole and tune the frequency in such a way that now k 2 = ft. 
The position of the minima therefore remain unaltered. But the barrier 
heights are altered. We shall see that the tunneling amplitude across the 
0 = 0 barrier (T2o) decreases whereas the one across the 0 = rc barrier (T2~) 
increases. Let us forget about the r-dependent factors. These when analyt- 
ically continued to real time give factors of  the form (e"it), which is a phase 
factor multiplied by t. 

Define ~Ei = ~ SEi (i = 1, 2, 5, 6). Then 

IrooL 

I ~_ \-]i/r I/,~ 

For [Z=ol/IZool < 1 we require 

Szs 3/4 ln[(a + ~fa)/a] 
> (51) 

- ll(. + 

Similarly 

IT0.[ 
V / ~  \-I1/~a + ,f~)t/2 - 1/,/a 

• ~ e x p ~ ) J  (52) 
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For IT2 I/ITo I > 1 we require 

SE6 3/4 ln[(a + x/-a)/a] 
< (53) 

h 1/(a 
Taking 2mgmr3/2.,~ h, we can check that both equations (51) and (53) are 
satisfied for 0.064 < a < 0.038. For  0 < a < 0.064 the sign of the inequality 
(53) is reversed. Hence one can say that in the presence of a monopole at 
the center the tunneling amplitude across the 0 = 0 barrier decreases, 
whereas it increases across the 0 = rc barrier. Of  course we have tuned the 
frequency to a lower value in order to keep the positions of the minima fixed. 

One cannot comment on the total tunneling amplitude without evalu- 
ating the preexponential factors. Nor can one conclude whether the splitting 
increases or decreases. A fuller understanding of the solution would have to 
await the solution of the relevant Schr6dinger equation whose eigenvalues 
would determine the corresponding fluctuation determinant. 

(c) In this case, where the potential exhibits a single maximum at ,9 = rc 
(and minimum at 0 = 0, 27r) and the external magnetic field is generated by 
A,, one can proceed in the same way as in (a) and show that the tunneling 
amplitude as well as the level splitting decrease in the presence of the 
magnetic field. 

(d) Finally, if the potential exhibits a single maximum and we have a 
monopole at the center, we can analyze the situation along the same lines 
as in (b). With k 2 = r  and a = ~  in the expressions for Te and T;,  
respectively, we get (with Sz9 = ~ SE9 ) 

Ir;I 

X [ ( - ~ ) 1  (54) 

Thus T~ < T;  if 

.SEg, > 3/4 ln[(a + x/~)/a] (55) 
h 1/x//a - 1/(a + 

One can check that for all a > 1, equation (55) is satisfied. Thus we can say 
that 

A~)(a = r > Ai(k2 = 4) (56) 

Now k2 = r implies a similar value of a. Therefore,  if we increase the 
frequency of  rotation in such a way that the fluctuation determinants 
cancel out in the ratio, we can say that the ratios of the splittings and the 
tunneling amplitudes vary according to (54) and (55). 
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Figures 2 and 3 show the validity of equations (51), (53), and (55). 

5. SUMMARY AND CONCLUSION 

The idea behind this paper was to explore the consequences Of external 
magnetic fields on tunneling amplitudes and level splitting in the model 
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problem of a charged particle on a vertical rotating circle in a uniform 
gravitational field. We have considered two magnetic fields, generated by the 
vector potentials As and A2. For the first one the analysis was simple. The 
crucial point was the fact that as a ~ ks the Lagrangian in the absence of 
the magnetic field went over to that in the presence of it. At the classical 
level, the minima shift toward 0 = 0 (2re) and the barrier heights increase for 
the case in which 0 < kl < 1. If  k s > 1, then the only maximum is at 0 = 0 
and the barrier height does not change, Quantum mechanical tunneling 
takes place, leading to a splitting in the degenerate minima for 0 < kl < 1. 
The tunneling amplitude and level splitting both decreases relative to the 
case with no magnetic fields. For ks > 1, where tunneling is associated with 
the winding of the particle around the circle, there is a similar "splitting?' 
In the same way as for 0 < kl < 1, the tunneling amplitude and splitting are 
lower than in the case without magnetic field. 

In the second case, where the magnetic field is due to a magnetic 
monopole sitting at the center, we have attempted to give a partial answer 
to the question regarding tunneling amplitudes and level splitting. Keeping 
the positions of the minima fixed by tuning the frequency, we have been able 
to show that the presence of the monopole is manifested in the decrease of 
the tunneling amplitude across the 0 = 0 barrier and an increase across the 
0 = n barrier for 0.064 < a < 0.38. If a < 0.064 both the amplitudes de- 
crease. For the case when k2 > 1 a similar analysis shows a decrease in the 
tunneling amplitude and level splitting. Although we have derived certain 
consequences, the full understanding of the tunneling phenomena in this 
model problem requires an evaluation of the fluctuation or instanton 
determinant. This would give us explicit forms for K1, ./(2, and/(3 and we 
could then compute exactly the relevant amplitudes and splitting. Through- 
out our analysis we have tried to derive results which depend on the forms 
of/s /s and K3. Whereas a knowledge of this is not necessary for the 
magnetic field generated by A1, it is absolutely necessary for the problem 
with the monopole. Attempts toward obtaining the eigenvalues of the relevant 
Schr6dinger equation (necessary for evaluating the instanton determinant) 
are in progress and the results will be communicated in future publications. 

APPENDIX 

Let us discuss the magnetic fields we have used in some detail. 
The first one, i.e., As arises in the context of classical solutions of the 

Weinberg-Salam model. The Lagrangian for this model can be written as 
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We will look for a finite-energy configuration (FEC) of this model. This 
FEC will result in the magnetic field that we are considering. 

We begin with an ansatz for the SU(2) Higgs field in the following 
asymptotic f o r m :  

F cos O 7 
c~ = FL sin O ei+ A (12) 

where F is the vacuum expectation value of q~, determined from the 
minimization of the potential. 

Now, to look for a FEC we must satisfy Deq~[r~ = 0 asymptotically. 
Notice that ~ =const ,  8 i ~ [ r + o  ~ ~ 1/r, and therefore A u l r ~  ~ "~ 1/r. Now, 
this condition is adequate to obtain the asymptotic gauge fields. The 
leading behavior of the field equations is 

g 
ejF,j a abc b c +ge A /  F i j  = --i~ (d~tzaDi(~- c.c.) 

(A3) 
o _  g O+Fij---i (~b~'D~b - c.c.) 

It is clear that, asymptotically, the left-hand side goes nominally as 1/r 3 and 
the right-hand side with single derivative as 1/r. Therefore, to leading 
order, we can drop the LHS and impose D,.q~l~+ + = 0. Using the elegant 
prescription of Nambu (1977), we can solve for the asymptotic gauge fields 
(Soni, 1980) 

gA ~ = 2( 1 - r/) e+ sin ~ (e~ cos 0 + e0 sin 0) ~ 
r 

- 2 e~ cos 0 (e~ sin 0 - e o cos ~ ) ~ -  2 e0 (e+) ~ (A4) 
r r 

g'A o = 2r/e! sin 
r 

The electromagnetic tensor can then be extracted as 

~m = __[g,r~:[d~tza(o/Igp[2] _grOl(g2 +g,2)l/Z (15) 

Since 

where 

and 

Lv = -2i[O~4~tOvq~ - ~v~t~]/[O[ 2 

(A6) 

(A7) 

, 0 g Fur = r/fur (A8) 
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we have 

f~m = r/[(g2 + g,2)m/gg,]fuv = [r//e]f~v (A9) 

Sinces is Abelian, it is linear in the electromagnetic potential and we have 

A ~m = (2q/e)(%)~ (sin 0)/r = rll [(sin 0)/r](e~) ( A  1 O) 

Let us now look at the case for a magnetic monopole. 
Consider a magnetic monopole of  strength g at the origin. The 

magnetic field is given by 

B = (g/r3)/: = -gV(1 / r )  ( A l l )  

So, 
VT . .~ = 4~gr 63(r) (A12) 

The total flux through a sphere surrounding the origin is 

(9 = 4rcr2B = 4rcg (A13) 

The wave function for a particle of  charge e in the field of  this monopole 
is 

E 1 O = 10t exp ~ ( p .  ~ - E t )  (A14) 

In the presence of  an electromagnetic field,/~ ~/7--(eA/c) ,  so ( ; e )  
0 -'*O exp --~c ~"  f (A15) 

or the phase c~ changes by 

e _ 
-,c~ - ~ c  A -  f (A16)  

Consider a closed path at fixed r, 0 with ~b ranging from 0 to 2n. The total 
change in phase is 

ef 
el( = hc curl A)" dS 

e f .dS 
he 

e 
• (flux through a cap) 

hc 
e 

= hc qg(r, 0) (A17) 
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Fig. 4. A magnetic monopole sitting at the center of a sphere. 

~b(r, O) is the flux through the cap defined by a particular r and 0. As O is 
varied, the flux through the cap varies as shown in Fig. 4. As 0 ~ 0, the loop 
shrinks to a point and the flux passing through the cap approaches zero: 
~(r ,  O) = 0. 

As the loop is lowered over the sphere, the cap encloses more and more 
flux until at O ~rc  we should have, from (A13), 

~b(r, ~) = 4~g (A18) 

However, as ,9 ~ re, the loop has again shrunk to a point, so the requirement 
that ~b(r, z0 is finite entails, f rom (A17), that A is singular at 0 = 7r. This 
argument holds for all spheres of  all possible radii, so it follows that A is 
singular along the entire negative z axis. This is known as the Dirac string. 

Now it is clear from (A12) that if B = curl A and A is regular, then 
div B = 0, and no magnetic charge may exist. F rom the argument above, A 
is constructed by considering the pole as the endpoint of  a string of 
magnetic dipoles whose other end is at infinity. This gives 

g (1 - cos ~) 
Ar = A o  = 0 ,  A o - (A19) 

r sin 0 

A is clearly singular along r = - z .  If, on the other hand the Dirac string 
had been chosen to be along r = z, we would have had 

- -g  1 -- cos O 
Ar = A~ = 0, A~ - (A20) 

r sin O 

So, with g = qz we can write 

q2(1 -- cos 0) ^ 
A = e~ 

r sin 0 

-q2 (1  + c o s  0) A 
- r sin 0 e~ 

(region excluding S pole) 

(region excluding N pole) 

(A21) 
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